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Abstract

A new group of structure and asymptotic preserving reduced-order models (ROMs) for mul-
tidimensional nonlinear thermal radiative transfer (TRT) problems is presented. They are
formulated by means of the nonlinear projective approach and data compression techniques.
The nonlinear projection is applied to the Boltzmann transport equation (BTE) to derive
a hierarchy of low-order moment equations. Approximation of the Eddington tensor that
provides exact closure for the system of moment equations is found with projection-based
data-driven methodologies. These include the (i) proper orthogonal decomposition (POD),
(ii) dynamic mode decomposition (DMD) and (iii) a variant of the DMD. A parameteri-
zation is derived for this ROM for the temperature of radiation incoming to the problem
domain (the radiation drive temperature). This parameterization is informed from results of
a dimensionless study of the TRT problem. Analysis of the ROMs is performed on the clas-
sical Fleck-Cummings TRT multigroup test problem in 2D geometry with a radiation-driven
Marshak wave. Numerical results are presented to demonstrate the performance of these
ROMs for the simulation of evolving radiation and heat waves. Results show these models
to be sufficiently accurate for practical computations with rather low-rank representations of
the Eddington tensor. As the rank of the approximation is increased, the errors of solutions
generated by the ROMs gradually decreases.

Keywords: Boltzmann transport equation, quasidiffusion method, variable Eddington
factor, proper orthogonal decomposition, dynamic mode decomposition, nonlinear PDEs

1. Introduction

The primary mode of energy redistribution in materials that exist at extremely high
temperatures is radiative transfer, where energy is transported through the mechanisms of
propagation, absorption and emission of photon radiation. Radiative transfer thus plays an
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essential role in many different physical phenomena that can be found in a wide range of fields
including plasma physics, astrophysics, atmospheric and ocean sciences, fire and combustion
physics, and high-energy-density physics [1, 2, 3, 4]. The multiphysics models for each of
those corresponding phenomena involving radiation transport (e.g. radiation-hydrodynamics
problems) are described by complex systems of differential equations. Solving this class of
problems is associated with an array of fundamental challenges. The systems of governing
equations are generally (i) tightly coupled, (ii) strongly nonlinear, (iii) characterized by
multiple scales in space-time, and (iv) high-dimensional.

The Boltzmann transport equation (BTE) describes the propagation of particles in mat-
ter. It is an essential part of multiphysics models describing physical systems in which energy
redistribution is affected by radiation transport. Its solution depends on 7 independent vari-
ables in 3D geometry and typically resides in a higher dimensional space than the other
multiphysics equations it becomes coupled to. The BTE drives the dimensionality of these
problems, and as such the number of degrees of freedom (DoF) required to describe such
physical systems is largely determined by the dimensionality of the BTE solution. Employ-
ing a reduced-order model (ROM) for the BTE can thus be an effective means to decrease
computational costs associated with multiphysics problems involving radiative transfer.

Of the ROMs that have been previously developed for radiation transport, some of the
most well-known include the flux-limited diffusion, P1 and P1/3 models [5, 6, 7]. Another
group of models are based on the variable Eddington factor method that uses an approxi-
mation of the Eddington tensor by means of the first two moments radiation intensity. The
Minerbo model is derived by means of a maximum entropy closure for the Eddington tensor.
The MN method applies the maximum entropy closure for a system of N moment equations
[8, 9, 10]. Hence, the Minerbo model is the M1 method. Other commonly used models
apply Kershaw, Wilson, Livermore closures [11, 12, 13, 14]. The capabilities of these ROMs
have been extensively studied and they remain as useful and computationally inexpensive
methods for many applications where available computational power is the limiting factor
in numerical simulation. However, the accuracy of these models is limited. The generation
of more advanced classes of ROMs for these types of problems is currently an active area
of research, aimed at the development of models that can produce highly accurate solutions
with low computational cost.

In recent times the majority of these research efforts have been focused on the devel-
opment of data-based models. These models are founded on leveraging the vast amounts
of data available from experiments and simulations that have been amassed over the years,
with the idea to take advantage of general model-order reduction techniques combined with
some given databases to achieve a reduction in dimensionality. Many such techniques are
available to choose from [15, 16, 17, 18, 19], some notable examples including: (i) the
proper orthogonal decomposition (POD) (a.k.a. principle component analysis (PCA) or the
Karhunen-Loève expansion) [20, 21, 22, 23, 24, 25], (ii) the dynamic mode decomposition
(DMD) [26, 27, 28, 29], (iii) deep neural networks (DNNs) [30], (iv) the proper generalized
decomposition (PGD) [31], (v) balanced truncation [32] and (vi) reduced basis methods [33].
These techniques have seen extensive use in the fluid dynamics community for the modeling
of general nonlinear flows [34, 35], linearized flows [36], compressible flows [37], turbulence
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[24, 38] and other applications [39, 40]. Naturally the same techniques also have a wide
range of applicability in the development of ROMs for particle transport.

Linear particle transport problems have been the subject of development for many such
models. The POD and reduced-basis methods have been applied to achieve a reduction in
the dimensionality along the angular variable for various neutral particle transport problems
[41, 42, 43, 44, 45]. POD-Petrov-Galerkin projection approaches were used to create ROMs
for steady-state, parameterized neutral particle transport problems in 1D geometry [46, 47].
The DMD has been applied as a surrogate model to predict neutron populations in subcritical
metal systems [48]. Explorations were done with the PGD for separating (i) spatial and
energy variables in multigroup neutron diffusion problems [49], (ii) spatial and angular
variables for the BTE in 1D slab geometry [50], and (iii) spatial variables for the BTE in
2D Cartesian geometry [51]. A low-rank manifold projection technique has been used to
form a ROM for linear time-dependent radiation transport problems [52, 53, 54, 55]. A
POD-Galerkin projection based methodology has been developed to perform dimensionality
reduction in both space and time for linear dynamical systems and applied to problems of
linear Boltzmann transport [56]. Neural networks have been used to (i) obtain data-driven
estimations of closures for PN -type systems of moment equations of the linear BTE [57, 58],
and (ii) create surrogate models for the 1D linear BTE [59, 60] and the 2D neutron diffusion
equation [61].

In addition, development of ROMs for nonlinear problems of radiative transfer has been
investigated. The frequency dimension in multigroup SP1 radiative heat transfer calcula-
tions has been reduced using a POD-based methodology [62]. POD-Galerkin and trajectory
piecewise-linear methods have been used to generate ROMs for spacecraft thermal analysis
with a nonlinear radiative heat transfer component [63]. Reduction in frequency dimension
was found using an optimization problem to derive few-group models of radiative heat trans-
fer in plasma applications [64]. ROMs for grey nonlinear radiation diffusion problems have
been formulated with the PGD [65], POD [66] and modal identification method [67]. POD-
based ROMs for radiating fluids have been constructed by applying a linearized estimation
of radiative transfer effects based on POD data of non-radiating fluids [68, 69].

Particle transport problems in nuclear reactor-physics applications have also been the
subject of data-driven model reduction research efforts. A reduced basis method was applied
to pin-by-pin reactor calculations [70]. The PGD has been used to model (i) reactor kinetics
[71, 72], and (ii) the neutron flux and cross sections for light water reactors [73]. POD-
Galerkin projection was applied to the modeling of steady-state, parameterized molten salt
fast reactor problems [74, 75, 76]. POD-Galerkin and DMD-Galerkin approaches have been
used to model the neutronics in various reactor type problems with feedback from delayed
neutron precursors [77, 78, 79]. A POD-Galerkin projection method has been devised for
use with domain-decomposition in reactor simulations [80].

In this paper, ROMs are developed for the fundamental thermal radiative transfer (TRT)
problem. This problem is defined by the BTE coupled with the material energy balance
(MEB) equation that describes energy exchange between radiation and matter. The TRT
problem models a supersonic radiative flow [81], and serves as a useful platform for the
development and testing of new computational methodologies. TRT plays an essential role

3



in the evolution of many phenomena contained in high-energy density physics and plasma
physics. It can be used to model for instance the important class of supersonic radiation
shock experiments [81, 82, 83, 84]. Furthermore, the TRT problem inherits many of the
fundamental challenges exhibited by the more general class of radiation hydrodynamics
problems.

We present structure and asymptotic preserving ROMs developed by combination of
nonlinear projection and data-based techniques of model order reduction. TRT problems
in 2D Cartesian geometry are considered. These ROMs are constructed from a set of low-
order equations for moments of the specific intensity with data-driven approximate closures.
The ROMs are based on the multilevel quasidiffusion (QD) method [85], also known as the
variable Eddington factor (VEF) method [86]. This method is in essence a nonlinear method
of moments [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]. It is formulated by (i) the high-order
BTE and (ii) a hierarchy of low-order QD (LOQD) equations for moments of the radiation
intensity. This system is exactly closed through the use of the Eddington (QD) tensor and
other linear-fractional factors that are weakly dependent on the BTE solution. Multiphysics
equations, e.g. the MEB equation, are coupled to these low-order moment equations on
the same dimensional scale as occupied by the multiphysics. This constitutes our initial
reduction in dimensionality (with no approximation) and has been shown to give significant
advantage compared to other methods in solving multiscale, multiphysical problems.

The multilevel set of LOQD equations coupled with the MEB equation is applied as a
basis for model reduction with the use of approximate closures. The hierarchy of multigroup
and grey LOQD equations employed by the proposed ROMs are a collection of conservation
laws. This leads to preservation of macroscopic behavior of TRT phenomena and yields
the foundation for ROMs which reproduce the essential physical structure of the solution
as well as its various asymptotic properties. Closure for the multilevel system of LOQD
equations is found by means of a data-driven approximation of the Eddington (QD) tensor
provided by the POD and DMD. The following analysis shows that ROMs with POD of
the Eddington tensor have some advantage compared to those based on DMD. The POD-
based approach is applied to develop parameterized ROMs. We consider TRT ROMs that
are parameterized over the temperature of radiation incoming to the problem domain (i.e.
the radiation drive temperature) using an interpolant between databases. The interpolant is
defined based on results from a dimensionless study of the target class of TRT problems, used
to identify characteristic scaling relationships between the radiation field and characteristic
temperature of radiation.

The remainder of this paper is organized as follows. The TRT problem is defined in
Section 2. In Section 3 we formulate the multilevel QD (MLQD) method that is applied
as a basis for TRT ROMs. A brief review of the POD and DMD is given in Section 4.
The developed class of ROMs for TRT problems in 2D Cartesian geometry based on mul-
tilevel moment equations with data-informed closures is formulated in Section 5. Section
6 presents numerical results and analysis of performance of the ROMs on the well-known
Fleck-Cummings test problem [98]. Section 7 presents parameterized ROMs for a class of
TRT problem. We conclude with a brief discussion in Section 8.
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2. Thermal Radiative Transfer

We consider the TRT problem given by the multigroup BTE [89, 99]

1

c

∂Ig
∂t

+Ω ·∇Ig + κg(T )Ig = κg(T )Bg(T ), (1)

r ∈ Γ, Ω ∈ S, g = 1, . . . , G, t ∈ [0, tend]

with the boundary condition (BC)

Ig
∣∣
r∈∂Γ = I ing , Ω · en < 0 , (2)

and the initial condition (IC)
Ig
∣∣
t=0

= I0g , (3)

and the MEB equation, which models energy exchange between radiation and matter

∂ε(T )

∂t
=

G∑
g=1

∫
4π

κg(T )
(
Ig −Bg(T )

)
dΩ, (4)

T |t=0 = T 0. (5)

Here Ig = Ig(r,Ω, t) is the group intensity of radiation, T = T (r, t) is the material temper-
ature, ε is the material energy density, κg is the material opacity for the group g, and Bg is
the group Planckian function given by

Bg(T ) =

∫ νg

νg−1

B(ν, T )dν, (6)

where

B(ν, T ) =
2

c2h2

ν3

e
ν
T − 1

, (7)

is the spectral Planckian black-body radiation distribution function. Here ν and T are
measured in eV. νg is the upper boundary of the gth frequency group and ν0 = 0. c is the
speed of light, h is Planck’s constant, r ∈ R3 is spatial position, Ω is the unit vector in the
direction of particle motion, g is the frequency group index, G is the number of frequency
groups, t is time. We denote S = {Ω ∈ R3 : |Ω| = 1}, Γ ⊂ R3 is the spatial domain, ∂Γ is
the boundary surface of Γ and en is the outward-facing unit normal vector to ∂Γ. The TRT
problem (1) and (4) neglects photon scattering, material motion and heat conduction.

3. The Multilevel Quasidiffusion Method

The MLQD method is formulated by means of a nonlinear projective approach. The BTE
is projected in several stages onto a sequence of subspaces to reduce dimensionality of the
transport problem and derive a closed hierarchy of low-order equations [88]. This multilevel
set of equations for the TRT problem consists of two low-order systems. The 7-dimensional
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BTE is projected onto a 5-dimensional subspace by taking its first two angular moments.
These equations are written as the multigroup LOQD equations given by [85, 86, 87]

∂Eg

∂t
+∇ · Fg + cκg(T )Eg = 4πκg(T )Bg(T ), (8a)

1

c

∂Fg

∂t
+ c∇ · (fgEg) + κg(T )Fg = 0, (8b)

en · Fg

∣∣
r∈∂Γ =

(
cCg

(
Eg − Ein

g

)
+ F in

g

)∣∣∣
r∈∂Γ

, Eg

∣∣
t=0

= E0
g , Fg

∣∣
t=0

= F 0
g , (8c)

whose unknowns are the multigroup radiation energy density Eg(r, t) =
1
c

∫
4π
Ig dΩ and flux

Fg(r, t) =
∫
4π
ΩIg dΩ. Note that Eq. (8a) is the group radiation energy balance equation,

and Eq. (8b) is the group radiation momentum balance equation. This system is exactly
closed via the Eddington (QD) tensor given by

fg =

∫
4π
Ω⊗ΩIg dΩ∫
4π
Ig dΩ

. (9)

The group boundary factors are defined as

Cg =

∫
Ω·en>0

en ·ΩIg dΩ∫
Ω·en>0

Ig dΩ

∣∣∣∣
r∈∂Γ

, (10)

and

Ein
g =

1

c

∫
Ω·en<0

I ing dΩ, F in
g =

∫
Ω·en<0

en ·ΩI ing dΩ, (11)

E0
g =

1

c

∫
4π

I0g dΩ, F 0
g =

∫
4π

ΩI0g dΩ. (12)

The multigroup LOQD equations are projected onto a 4-dimensional space by summating
them over all frequency groups to obtain the effective grey LOQD equations written as [91]

∂E

∂t
+∇ · F + cκ̄EE = cκ̄BaRT

4, (13a)

1

c

∂F

∂t
+ c∇ · (f̄E) + K̄RF + η̄E = 0. (13b)

en · F
∣∣
r∈∂Γ =

(
cC̄

(
E − Ein

)
+ F in

)∣∣∣
r∈∂Γ

, E
∣∣
t=0

= E0, F
∣∣
t=0

= F 0, (13c)

which solve for the total radiation energy density E(r, t) =
∑G

g=1 Eg and total radiation

flux F (r, t) =
∑G

g=1 Fg. Here aR is Stefan’s constant. The Eqs. (13a) and (13b) are the
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total radiation energy and momentum balance equations, respectively and are exactly closed
using the following set of spectrum averaged quantities:

f̄ =
1∑G

g=1Eg

G∑
g=1

fgEg, κ̄E =

∑G
g=1 κgEg∑G
g=1Eg

, κ̄B =

∑G
g=1 κgBg∑G
g=1Bg

, (14a)

K̄R = diag
(
κ̄R,x, κ̄R,y, κ̄R,z

)
, κ̄R,α =

∑G
g=1 κg|Fα,g|∑G
g=1 |Fα,g|

, α = x, y, z, (14b)

η̄ =
1∑G

g=1Eg

G∑
g=1

(κg − K̄R)Fg . (14c)

The boundary and initial conditions for the effective grey system are defined using

C̄ =

∑G
g=1Cg

(
Eg − Ein

g

)∑G
g=1

(
Eg − Ein

g

) ∣∣∣∣∣
r∈∂Γ

, (15)

Ein =
G∑

g=1

Ein
g , F in =

G∑
g=1

F in
g , E0 =

G∑
g=1

E0
g , F 0 =

G∑
g=1

F 0
g . (16)

Lastly, the MEB equation (4) is cast in effective grey form

∂ε(T )

∂t
= cκ̄EE − cκ̄BaRT

4 (17)

to couple with the effective grey LOQD equations (13). In sum, the MLQD method for TRT
problems is formulated with:

1. The high-order multigroup BTE (1) for the group intensity Ig,

2. The multigroup LOQD equations for Eg and Fg defined by Eqs. (8),

3. The effective grey problem comprising the effective grey LOQD equations for E and
F coupled with the MEB equation for T (Eqs. (13) and (17)).

The components of the group Eddington tensor fg and the boundary factor Cg are com-
pressed data of the high-order solution of the BTE (1). These data carry all information
about the BTE solution that the hierarchy of the low-order equations (8) and (13) needs
to accurately describe radiative transfer physics. In this multilevel system of equations, the
high-order BTE (1) can be interpreted as the one that generates the shape function for av-
eraging and calculation of fg and Cg. The role of the low-order equations is to generate the
moments of the transport solution and communicate with the MEB equation as an element
of a multiphysics model.
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4. Projection of Data onto Low-Rank Subspaces Using the POD and DMD

4.1. Proper Orthogonal Decomposition

Let {an}Nn=0 be a set of data-vectors a ∈ Rd such that an = a(tn) for n = 0, . . . , N
at some set of instances {tn}Nn=0, which cover the time interval of the problem with t0 = 0
and tN = tend. The POD seeks an orthonormal basis {u1,u2, . . . ,uk} onto which the set of
zero-mean data {ân}Nn=0, defined as

ân = an − ā, ā =
1

N + 1

N∑
n=0

an (18)

can be projected in a way that optimally captures the energy associated with the given
data set [23]. This optimality condition amounts to finding the projection of {an}Nn=0 onto
span{ā,u1,u2, . . . ,uk} with minimal error in the Frobenius norm. The rank-k POD expan-
sion of the dataset {an}Nn=0 is written as

an ≈ ā+
k∑

i=1

αn
i ui, (19)

where the coefficients are given by

αn
i = ⟨ân,ui⟩, n = 0, . . . , N, i = 1, . . . , k. (20)

Let us define the matricesA ∈ Rd×(N+1) whose columns are given by the vectors {ân}Nn=0.
The thin (reduced) singular value decomposition (SVD) of A is

A = USV⊤, (21)

where U ∈ Rd×r and V ∈ R(N+1)×r hold the first r left and right singular vectors of A in
their columns, respectively, and S ∈ Rr×r holds the r nonzero singular values of A along
its diagonal in descending order, where r = rank(A). The POD basis vectors are found as
the first k columns of U and the projection coefficients are αn

i = vn,iσi, where σi is the ith

singular value of A and vn,i is the (n, i)th element of V. An efficient compression of A is
then constructed with the rank-k truncated SVD (TSVD) of A

A ≈ Ak = UkSkV
⊤
k , k ≤ r (22)

where Uk ∈ Rd×k and Vk ∈ R(N+1)×k hold the first k left and right singular vectors of A in
their columns, respectively, and Sk ∈ Rk×k holds the first k singular values of A along its
diagonal in descending order. Ak is actually the orthogonal projection of A onto {ui}ki=1,
written as Ak = UkU

⊤
k A. The error introduced by this orthogonal projection is given by

[100]

∥A−UkU
⊤
k A∥2F =

r∑
i=k+1

σ2
i (23)
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and
∥A−UkU

⊤
k A∥2 = σk+1. (24)

The relative error of the POD approximation in the Frobenius norm is therefore

ξ2 =
∥A−Ak∥2F
∥A∥2F

=

∑r
i=k+1 σ

2
i∑r

i=1 σ
2
i

. (25)

(1− ξ2) can be interpreted as the ratio of energy encompassed by the first k POD modes to
the total energy comprised by all POD modes of the given data [38]. Thus the interpretation
of ξ2 is the relative amount of energy that has been truncated from the full POD basis by
using only the first k POD modes. When the POD is performed, we choose some desired
value for ξ and find the rank k that satisfies the following expression

k = min

{
j :

∑r
i=j+1 σ

2
i∑r

i=1 σ
2
i

≤ ξ2
}

(26)

4.2. Dynamic Mode Decomposition

We consider the case when all time instances {tn}Nn=0 are uniformly spaced such that

tn+1 = tn +∆t, n = 0, . . . , N − 1 . (27)

Note that DMD methods have been developed to allow for non-uniform sampling of time
steps [101, 102]. The DMD constructs the best-fit linear operator B to the data {an}Nn=0,
generating the following dynamic system:

dã(t)

dt
= Bã(t), (28)

whose solution ã(t) approximates a(t) and is given by

ã(t) =
k∑

i=1

βiφie
ωit, (29)

where (φi, ωi) are the eigenpairs of B and {βi}ki=1 is some set of coefficients. The eigenpairs
(φi, ωi) are calculated with the following orbital data matrices

X = [a0 a1 . . . aN−1] ∈ Rd×N , X̂ = [a1 a2 . . . aN ] ∈ Rd×N , (30)

which define B̃ = X̂X+ as the closest approximation to B in the Frobenius norm given the
dataset {an}Nn=0, where + signifies the Moore-Penrose pseudo inverse [100]. The eigenpairs
of B̃, written as (φ̃i, λi), are closely related to the eigenpairs of B [28] and each eigenvector
φi can be calculated from the corresponding reduced eigenvector φ̃i. The pairs (φi, λi) can
construct ã(t) at the specific points {tn}Nn=0 used to define the dataset (30) as

ã(tn) =
k∑

i=1

βiφi(λi)
n, n = 0, . . . , N. (31)
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Note that Eq. (31) cannot find ã(t) for t /∈ {tn}Nn=0 without some attached interpolant
in time. The continuous-in-time DMD expansion (29) is found with the transformation

ωi =
ln(λi)
∆t

. The pairs (φi, λi) are called DMD modes and eigenvalues and are in practice

calculated via the projected linear operator B̃k = U⊤
k B̃Uk, whose eigenpairs are written

as (φ̃
(k)
i , λi). Here Uk holds the left singular vectors of X in its columns. Note that the

eigenvalues of B̃k are the DMD eigenvalues. The process of calculating the eigenpairs (φi, λi)
is outlined in Algorithm 1 [28].

Algorithm 1: Algorithm for computing DMD modes and eigenvalues [28]

Input: solution data {an}Nn=0 and ξ ∈ [0, 1]

1. Construct orbital data matrices X, X̂← {an}Nn=0 via Eq. (30)

2. Compute TSVD X ≈ UkSkV
⊤
k with k ≤ rank(X) satisfying Eq. (26) using ξ

3. Compute reduced DMD matrix B̃k = U⊤
k X̂VkS

−1
k

4. Find eigenpairs {(φ̃(k)
i , λi)}ki=1 of B̃k

5. Compute DMD modes:

• (Exact DMD) φi ← 1
λi
X̂VkS

−1
k φ̃

(k)
i , λi ̸= 0, i = 1, . . . , k

• (Projected DMD) φ̂i ← Ukφ̃
(k)
i , i = 1, . . . , k

Output: DMD modes {φi}ki=1 or {φ̂i}ki=1 and DMD eigenvalues {λi}ki=1

In Algorithm 1 there are two types of DMD modes that can be calculated: (i) exact DMD
modes and (ii) projected DMD modes. In practice the exact DMD modes are preferred, as
they can be shown to be the eigenvectors of the linear operator B that lie in the image of
X̂. The projected DMD modes have been shown to be simply the projection of the exact
modes onto the image of X [28]. Because the exact DMD modes are generally regarded as
the default in literature we find it important to note that for the ROMs developed in this
paper, when the DMD is invoked we actually use the projected modes.

The projected DMD modes (φ̂i) were used in the original formulation of the DMD,
which can be interpreted as a method that approximates the last data-vector as a linear
combination of all former vectors, i.e.

aN =
N−1∑
n=0

cna
n + ς, (32)

where cn are coefficients and ς is the residual incurred by the DMD approximation [103]. It
comes naturally then, that when the exact DMD modes are used instead of the projected
DMD modes, the DMD can be interpreted as approximating the first data-vector as a linear
combination of all latter vectors,

a0 =
N∑

n=1

cna
n + ς̂ , (33)
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since the exact DMD modes lie in the image of X̂. This effective ‘shift’ of the DMD residual
to the first data-vector can come at a large cost to the time-dependent problems we consider.
The initial transients of these problems are more rapidly evolving than the later ones and
are less likely to be well captured by an expansion in the later solutions. It is with this in
mind that we choose to utilize the projected DMD modes in this paper when applying the
expansion (29).

4.3. Equilibrium-Subtracted DMD

A variant of the DMD is also considered for model-order reduction purposes which we
will refer to as the equilibrium-subtracted DMD, or DMD-E. The DMD-E differs from the
DMD by constructing the linear operator B to fit the equilibrium-subtracted data {ǎn}N ′

n=0,
where ǎn = an−ae and ae is an equilibrium solution vector [103, 104] for the given problem.
Note that the DMD-E in the case when ae = ā (ref. Eq. (18)) is equivalent to the Fourier
expansion of the data [103]. The same algorithm used for the DMD (Alg. 1) is used to
calculate the DMD-E eigenvectors and modes, only replacing {an}Nn=0 with {ǎn}N ′

n=0. The
original function a(t) is reconstructed through the following expansion, similar to Eq. (29),
as

a(t) ≈ ae +
k∑

i=1

βiφ̂ie
ωit. (34)

The vector ae is chosen from any equilibrium solution of the underlying system that
determines a(t) [104]. The time-dependent TRT problems under consideration here possess
a steady-state solution that is approached as t → ∞. The most natural choice for this
application is then to let ae = lim

t→∞
a(t). In this study ae = a(tN) is used to approximate

the steady-state solution, so that N ′ = N − 1 and the equilibrium subtracted data is

ǎn = an − aN , n = 0, . . . , N − 1. (35)

5. Multilevel Moment Equations with Data-Driven Closures

In this study, we develop ROMs for TRT on the basis of the hierarchy of LOQD moment
equations (8) and (13) coupled with the MEB equation (17) where the Eddington tensor is
approximated by data-driven techniques. This forms a class of ROMs henceforth referred
to as data-driven Eddington tensor (DET) ROMs. By nature these ROMs require data for
the Eddington tensor that is known a-priori. This Eddington tensor data is generated as
the full-order model (FOM) solution (Eqs. (1), (8), (13) and (17)) for some set of base-
case (reference) problems the parameters of which cover a desired range. Given this set of
data, the chosen data-driven functional must then approximate discrete grid functions of the
Eddington tensor and LOQD boundary factors. These grid functions will vary based on the
scheme used to discretize the multigroup LOQD system in space. We consider a 2nd-order
finite-volumes scheme [105], confined to orthogonal spatial grids in 2D Cartesian geometry,
denoting the number of cells in the x- and y- directions as X and Y respectively.
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Vectors of each component of the group Eddington tensor and boundary factors are
constructed at every nth time step over the entire spatial grid as

fnαβ,g,γ ∈ RDγ , γ = v, h, c, α, β = x, y, (36a)

Cn
θ,g ∈ RDθ , θ = L,B,R, T (36b)

with dimensions

DL = DR = Y, DB = DT = X, (37a)

Dv = (X + 1)Y, Dh = X(Y + 1), Dc = XY. (37b)

Notations are illustrated in Figure 1.

(a) Cell-wise grid functions (b) Boundary factors

Figure 1: Discrete grid functions shown on a sample 2D spatial mesh

The vectors in Eq. (36) are subsequently ‘stacked’ by frequency group to construct
complete data vectors for each quantity at the nth time step

fnαβ,γ =
(
(fnαβ,1,γ)

⊤ (fnαβ,2,γ)
⊤ . . . (fnαβ,G,γ)

⊤)⊤ ∈ RGDγ , (38a)

Cn =
(
(Cn

1 )
⊤ (Cn

2 )
⊤ . . . (Cn

G)
⊤)⊤ ∈ R2G(X+Y ), (38b)

where
Cn

g =
(
(Cn

L,g)
⊤ (Cn

B,g)
⊤ (Cn

R,g)
⊤ (Cn

T,g)
⊤ )⊤ ∈ R2(X+Y ). (39)

Finally the vectors in Eq. (38) are collected in chronological order as columns of the following
snapshot matrices

Afαβ,γ = [f1αβ,γ f2αβ,γ . . . fNαβ,γ] ∈ RGDγ×N , Ac = [C1 C2 . . . CN ] ∈ R2G(X+Y )×N , (40)

where N is the total number of time steps.
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This process of data collection is repeated a sufficient number of times to sample a target
parameter space with the FOM. Let Afαβ,γ (ϑ), Ac(ϑ) be the snapshot matrices that contain
the solution to the TRT problem defined with a set of parameters ϑ ∈ Θ, where Θ is the
space of problem parameters. The solutions to multiple realizations of the TRT problem,
each defined with one of the parameter sets contained in {ϑℓ}Lℓ=1 ⊂ Θ, are then held in the
matrices Afαβ,γ (ϑℓ), A

c(ϑℓ). Each of these snapshot matrices is then projected onto some
low-rank subspace as

Aϕ
k(ϑℓ) = GkAϕ(ϑℓ), k ≤ rank(Aϕ(ϑℓ)), ϕ = fαβ,γ, C (41)

where the projection operator Gk is defined by the specific method of data compression. The
rank-k representation of the matrix Aϕ of the form Aϕ

k ∈ CDA×(k+δ) is constructed of k sets
of various vectors and factors (all of which may be complex), which in total comprise DA

elements. Depending on the specific method used, δ can be 0 or 1. More concretely, Ak

takes the following general form

Ak ≡


ā ∪ {ui, vi, σi}ki=1, POD
{φ̂i, ωi, βi}ki=1, DMD
ae ∪ {φ̂i, ωi, βi}ki=1, DMD-E

(42)

When grid functions of the Eddington tensor and boundary factors are to be calculated

from {Afαβ,γ

k (ϑℓ)}Lℓ=1 and {Ac
k(ϑℓ)}Lℓ=1, the mapping operatorM(t, ϑ) is applied such that

f̃αβ,γ(t) =M(t, ϑ){Afαβ,γ

k (ϑℓ)}Lℓ=1. (43)

Here f̃αβ,γ(t) ∈ RGDγ approximates the γ grid function of the αβ component of the Edding-
ton tensor for the TRT problem with parameters ϑ at time t. The application of M(t, ϑ)
to {Ac

k(ϑℓ)}Lℓ=1 similarly approximates the boundary factors for this TRT problem. M(t, ϑ)
consists of two separate operators

M(t, ϑ) = I(ϑ)H(t), (44)

where H(t) constructs a grid function at time t from its low-rank representation and I(ϑ)
is an interpolation function of grid functions in Θ. If t is one of the time instances used to
generate the original snapshot matrices {A(ϑℓ)}Lℓ=1, then H(t)Ak simply regenerates that
data. Otherwise H(t) constructs the grid functions nearest in time to t and interpolates to
t.

In essence, the obtained projections hold fundamental information on the Boltzmann
transport solution (i.e. the radiation intensities). The Eddington tensor itself is a projection
of the radiation intensities onto a low-dimensional subspace. That information is projected
again onto a subspace of even lower dimensionality using the POD and DMD. This holds
several benefits. The computational burden of computing the LOQD closures is lessened as
we can store the needed high-order data efficiently in memory, and fewer computations are
required to interpolate between this data. The rank k of approximation is easily modified
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Algorithm 2: Obtaining the solution to TRT problems with the DET class of
ROMs

Input: {Af
k(ϑℓ)}Lℓ=1, {Ac

k(ϑℓ)}Lℓ=1, M
n = 0
while tn ≤ tend do

n = n+ 1

Compute f̃g =M(tn, ϑ){Af
k(ϑℓ)}Lℓ=1

Compute C̃g =M(tn, ϑ){Ac
k(ϑℓ)}Lℓ=1

T (0) = T n−1

q = 0

while ∥T (q) − T (q−1)∥ > ϵ1∥T (q)∥+ ϵ2, ∥E(q) − E(q−1)∥ > ϵ1∥E(q)∥+ ϵ2 do

Update Bg,κg with T (q)

Solve multigroup LOQD equations (8) with f̃g & C̃g for E
(q)
g , F

(q)
g

Compute spectrum-averaged coefficients in Eq. (14)

Solve effective grey problem (13) & (17) for T (q+1), E(q+1), F (q+1)

q = q + 1

end

T n ← T (q)

end

to accommodate different simulations, allowing one to adjust the approximation errors and
computational load.

The method for solving TRT problems with the DET ROMs is summarized in Algorithm
2. At each nth time step, the corresponding grid functions of the Eddington tensor and
boundary factors are generated by applying the operator M(tn) to the input compressed
data Ak. Then the material temperature and total radiation energy density are calculated
iteratively. At each q iteration the compressed representations of the Eddington tensor and
boundary factor data are used to define the multigroup LOQD equations. The solution to
the multigroup LOQD equations is used to generate all effective grey opacities and factors.
The effective grey problem formed by the coupled effective grey LOQD and MEB equations is
subsequently solved via Newton’s method to obtain the material temperature, total radiation
energy density and total radiation flux.

6. Accuracy and Convergence of DET ROMs versus Rank of Eddington Tensor
Approximation

6.1. Reduced-Order Model Analysis

A general purpose of ROMs is to find solutions of problems that have yet to be solved
(i.e. for ϑ /∈ {ϑℓ}Lℓ=1). Before such an application can be considered however, certain
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qualities of the ROM must be identified. It is imperative to demonstrate how well the
ROM can reconstruct a known FOM solution. The essential question concerns convergence
behavior of E and T with decrease of ξ and hence with increase in rank of approximation
of the Eddington tensor. Accuracy of ROM TRT solutions in time (and phase space) with
different values of ξ is another research item. Such analysis will enable one to determine
how the ROM can achieve a desired level of accuracy and reproduce essential characteristics
of physical phenomena and physical effects.

Numerical tests are performed on the models to investigate their properties and perfor-
mance. This numerical testing is done in two stages to investigate the ROM’s performance.
First the non-parametric case is explored, followed by the parametric case. In the non-
parametric case, a ‘base-case’ or reference FOM solution is found for some test problem to
form the ROM database, and then the same test problem is solved again with the ROM.
Comparisons of the ROM solution to the known FOM solution can be carried out on the
considered discrete grids in phase space and time. It is important to note that the only
errors incurred by our FOM are due to discretization and as such the FOM will converge to
the continuous TRT solution in the limit with refinement of grids in phase space and time.

In the non-parametric case, numerical results will be shown with the objective of iden-
tifying (i) how accurate the ROM solutions are relative to the FOM solution, (ii) whether
the ROM solutions converge to the FOM solution as ξ decreases towards zero, and (iii) if
the ROM solutions do converge to the FOM solution, whether they do so in a well-behaved
manner.

6.2. Test Problem

To analyze the accuracy of the DET ROMs, we use a 2-dimensional extension of the well-
known Fleck-Cummings (F-C) test problem [98]. This F-C test takes the form of a square
homogeneous domain in the x−y plane, 6 cm in length on both sides. The domain is initially
at a temperature of T 0, the left boundary of the domain is subject to incoming radiation
with blackbody spectrum at a temperature of T in, and there is no incoming radiation at
other boundaries. The selected reference parameters to be used here are T 0 = 1 eV and
T in = 1 KeV. The material is characterized by an opacity of

κν =
27

ν3

(
1− e−

ν
T

)
, (45)

and a material energy density that is linear in temperature

ε(T ) = cvT, (46)

with material heat capacity cv = 0.5917aR(T
in)3. The time interval of the problem is [0,6 ns].

All equations are discretized in time with the implicit backward-Euler integration scheme.
The BTE is discretized in phase space with the discrete ordinates and simple corner balance
schemes [106]. All low-order moment equations are discretized with a 2nd-order finite volumes
scheme in space [105]. A uniform grid of 20× 20 cells (i.e. X = Y = 20) with side lengths
of ∆x = ∆y = 0.3 cm is used to discretize the slab. G = 17 frequency groups are defined
as shown in Table 1. The Abu-Shumays angular quadrature set q461214 with 36 discrete
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Table 1: Upper boundaries for each frequency group

g 1 2 3 4 5 6 7 8 9
νg [KeV] 0.7075 1.415 2.123 2.830 3.538 4.245 5.129 6.014 6.898

g 10 11 12 13 14 15 16 17
νg [KeV] 7.783 8.667 9.551 10.44 11.32 12.20 13.09 1×107

t=1ns t=2ns t=3ns
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Figure 2: F-C test solution for the material temperature (T ) and total radiation energy density (E) over
the spatial domain at times t=1, 2, 3 ns.

directions per quadrant is used [107]. The total number of angular directions is M = 144.
The F-C problem is solved for the specified time interval t ∈ [0,6 ns] with N = 300 uniform
time steps ∆t = 2 × 10−2 ns. When generating ROM solutions to the F-C problem, the
following convergence criteria are used (ref. Algorithm 2): ϵ1 = 10−14 and ϵ2 = 10−15.

The solution to this F-C test for the material temperature and total radiation energy
density at times t = 1, 2, 3 ns is depicted in Figure 2. The solutions of both T and E take the
form of a wave that first rapidly forms on the left boundary before propagating to the right.
After this the domain is continuously heated. Eventually the solution reaches a regime close
to steady state.

The total number of DoF occupied by the Eddington tensor fg at a single instant of time
is Df = 2(Dv+Dh+Dc)G = 4.216×104. In comparison, the DoF occupied by the radiation
intensities from the simple corner balance scheme equals DI = 4XYMG = 3.9168 × 106.
This means that even before compressing the Eddington tensor with the POD or DMD, the
required memory occupation is DI

Df
= 93 times smaller than for the radiation intensities.
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Figure 3: Singular value distributions of select snapshot matrices of grid functions of the Eddington tensor
and boundary factor for the F-C test. i is the singular value index. The included matrices are: (a) Afxx,c ,
(b) Afyy,h , (c) Afxy,v , (d) Ac.

6.3. Data Analysis

The snapshot data used to construct the matricesAfαβ,γ andAc (see Eq. (40)) is obtained
by solving the TRT problem (Eqs. (1) & (4)) on the given grid in phase-space and time by
means of the MLQD method. This is the FOM solution of the test problem that is used
as the reference solution. The singular values of a select few of these snapshot matrices are
depicted in Figure 3. The singular values of those databases not shown here do not deviate
significantly from the chosen plots. The singular values for each of the databases decay
in a similar manner with 3 distinct sharp drops in magnitudes before reaching a value of
approximately 10−14 where decay halts. The singular values that have a value at or below
10−14 have reached the limit of machine precision and can be considered numerically zero.

Although the POD, DMD and DMD-E make use of slight variations on these snapshot
matrices, the singular value distributions of these variant matrices are very similar to those
pictured. For the databases without their final column, used for the DMD, their SVD is
almost exactly the same as for the full matrices since the final column holds near steady-state
data and does not add much new information to the span of the columns. For the POD
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Table 2: Ranks k for each approximate database
corresponding to different values of ξ for the POD

ξ Afxx,c Afxx,v Afyy,c Afyy,h Afxy,v Afxy,h Ac

10−2 15 17 15 15 14 17 14

10−4 34 36 34 34 37 36 35

10−6 49 49 52 49 65 68 48

10−8 115 110 120 115 129 127 87

10−10 152 148 154 153 159 158 132

10−12 179 178 180 180 185 184 160

10−14 203 203 205 205 207 207 188

10−16 300 300 300 300 300 300 300
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Figure 4: Plotted ranks k for the POD (see
Table 2)

Table 3: Ranks k for each approximate database
corresponding to different values of ξ for the DMD

ξ Afxx,c Afxx,v Afyy,c Afyy,h Afxy,v Afxy,h Ac

10−2 6 7 6 6 7 9 5

10−4 28 30 28 28 30 30 25

10−6 43 44 44 43 46 46 42

10−8 90 79 100 87 111 111 61

10−10 138 136 142 139 148 147 112

10−12 168 165 170 169 175 175 147

10−14 195 194 196 196 199 199 173

10−16 286 286 287 287 292 291 274

10−18 299 299 299 299 299 299 299
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Figure 5: Plotted ranks k for the DMD (see
Table 3)

Table 4: Ranks k for each approximate database
corresponding to different values of ξ for the DMD-E

ξ Afxx,c Afxx,v Afyy,c Afyy,h Afxy,v Afxy,h Ac

10−2 14 16 15 15 14 16 14

10−4 34 36 34 34 36 35 34

10−6 48 49 51 48 62 64 48

10−8 114 109 119 114 125 127 85

10−10 151 148 154 152 158 157 131

10−12 179 177 180 179 184 183 160

10−14 203 202 204 204 207 206 186

10−16 298 298 298 298 298 298 298
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Figure 6: Plotted ranks k for the DMD-E
(see Table 4)
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when the databases are centered about their column-mean, the only significant difference
from the shown plots is in the first singular value which decreases by roughly an order
of magnitude. The second singular value is also seen to decrease by roughly half. The
equilibrium-subtracted databases used for the DMD-E acquire singular value spectra very
similar to those obtained through the POD.

The POD, DMD and DMD-E are applied to the databases Afαβ,γ and Ac to generate
several different rank-k approximations of the FOM Eddington tensor data. For each method
of approximation, several ranks k were determined to satisfy a spectrum of chosen values
for ξ while calculating the TSVD (Eq. (26)). Tables 2, 3 and 4 display the ranks used to
approximate each individual database for every ξ. Figures 4, 5 and 6 plot these ranks against
ξ. The ranks used for the POD, DMD and DMD-E behave similarly with changes in ξ for
each snapshot matrix, gradually increasing with decreases in ξ until ξ = 10−16 where each
database’s rank increases by roughly 100. This is due to the singular value decay structures
shown in Figure 3 where decay stops after about 200 singular values. The only significant
difference in the used ranks between each of these methods given the same ξ is that the DMD
always uses a lower rank than the POD and DMD-E. This is an artifact of the centering
and equilibrium-subtraction operations done on the databases prior to the calculation of
each TSVD for the POD and DMD-E. Here these operations only significantly decreased
the first and second singular values of each matrix. This has the effect of reducing only the
denominator of Eq. (25) for all k > 1 and therefore inflating the rank required to satisfy a
given ξ.

6.4. Analysis of ROM Solution Errors

We now analyze the solutions of the F-C test computed by DET ROMs with the reduced-

rank databases Afαβ,γ

k and Ac
k. Figures 7, 8 and 9 show the relative error for the material

temperature (T ) and total radiation energy density (E) calculated in the 2-norm over space
at each instant of time in t ∈ [0, 6ns] where each unique curve corresponds to the ROM
solution generated for a given value of ξ. Note that errors are calculated relative to the

reference FOM solution used to generate Afαβ,γ

k and Ac
k.

Considering first the ROM using the POD, Figure 7 demonstrates a uniform convergence
of errors in time as ξ is decreased. The error curves all behave similarly in time as well, first
increasing in the rapidly evolving physical regime of wave evolution followed by stabilization
to the neighborhood of some value for times after roughly 0.5ns. The highest observed errors
are on the order of 10−4, corresponding to the ROM with ξ = 10−2. When ξ = 10−16, the
POD ROM invokes a full-rank representation of the Eddington tensor data and finds errors
on the order of 10−15, successfully obtaining the FOM solution to numerical precision. Next
looking at the ROM using the DMD, Figure 8 shows uniform convergence of the ROM errors
in time for ξ decreasing until ξ = 10−12. Further decreases in ξ have the effect of decreasing
errors while t > 2.5ns and increasing errors for t < 2.5ns. The lowest errors for a single
value of ξ exist on the order of 10−12 − 10−10. These effects are attributed to numerical
noise, of which the DMD has known susceptibility to [28, 103]. Results for ξ = 10−18 are
not shown here as there is no significant change from those seen for ξ = 10−16. The highest
errors observed with the DMD are on the order of 10−2 for ξ = 10−2, 2 orders of magnitude
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higher than observed for the POD with the same ξ. Lastly, the ROM using the DMD-
E suffers from an amplified sensitivity to numerical noise in calculations with high-rank
approximations compared to the ROM with the DMD. Errors shown in Figure 9 are seen
to converge up until ξ = 10−10, after which further decreases in ξ lead to increases in the
ROM errors. This effect is primarily observed for the early time instances of the problem.
In contrast, the later times tend to stagnate at the same level of error as ξ decreases.
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Figure 7: Relative errors in the 2-norm of the DET ROM using the POD using several ξ, plotted vs time
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Figure 8: Relative errors in the 2-norm of the DET ROM using the DMD using several ξ, plotted vs time

A different view of the data presented in Figures 7 - 9 is given in Figures 10, 11 and 12.
These plots graph the ROM errors (w.r.t. the FOM solution) in the relative 2-norm against
ξ, with each curve corresponding to a specific instant in time. These plots show convergence
behavior of DET ROMs at various instances. Let the errors of each ROM be written as
the function ϵ(x) = ∥xFOM−xROM∥2

∥xFOM∥2 . From Figure 10, it is immediately evident that the errors

associated with the POD ROM have the relationship ϵ(E) ≈ ϵ(T ) ≈ ξ · 10−2 up to the point
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where stagnation occurs from limitations of the finite precision of calculations. Figure 11
shows a similar relationship for the DMD ROM, with ϵ(E) ≈ ϵ(T ) ≈ ξ for ξ ≥ 10−8. A
decrease in the rate of convergence is observed for ξ < 10−8 with this ROM before stagnation
occurs around an order of 10−12 − 10−10. This slow in convergence rate is attributed again
to an increase in numerical noise as rank is increased.
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Figure 9: Relative errors in the 2-norm of the DET ROM using the DMD-E using several ξ, plotted vs time
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Figure 10: Relative errors in the 2-norm of the DET ROM using the POD at several times, plotted vs ξ

Lastly considering the DMD-E ROM, Figure 12 demonstrates the observed sensitivity
to numerical noise for small ξ. An initial increase in error level is seen at times t = .02, 1
ns for ξ = 10−10, and the errors at t = 2 ns increase at ξ = 10−12. This behavior is
accredited to a large magnification of numerical errors as seen with the DMD. The DMD-E
can be interpreted as the DMD on a set of residual vectors representing the distance of the
expanded data to the near steady-state solution. The residual vectors for near steady-state
data are then expected to have elements of very small magnitude which can contribute
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to numerical issues in the decomposition. This combined with the inherent sensitivity of
the DMD to numerics can lead to large amplifications of error. This interpretation also
gives justification to the behaviors seen in Figure 9. The exponentials in Eq. (34) are
expected to decrease toward zero as time moves onward so that the ‘steady-state’ solution
is only represented by the constant term. Any amount of noise introduced into the DMD-E
expansion will become less prevalent as t grows and the exponentials shrink.
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Figure 11: Relative errors in the 2-norm of the DET ROM using the DMD at several times, plotted vs ξ
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Figure 12: Relative errors in the 2-norm of the DET ROM using the DMD-E at several times, plotted
vs ξ

The results presented up this point indicate that when equipped with methods like the
POD and DMD, the DET class of ROMs can successfully and predictably converge to the
FOM solutions they were trained on. This property is not exhibited with use of the DMD-E.
Even so, in every case the DET ROMs are shown to perform well with low-rank. In practice,
it is the low-rank ROMs which are the most important as undoubtedly the DET ROM reaps
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the most computational benefits with larger ξ (i.e. ξ = 10−2, 10−4).
The analysis thus far has studied ROM errors in 2-norm over space. The local behavior

of errors over the spatial domain is now considered for the DET ROMs with ξ = 10−2, 10−4.
Figures 13, 14 and 15 show cell-wise relative errors in T and E at selected instants of
time. Each of these figures takes the form of two tables that display the relative pointwise
error in the DET ROM across the spatial domain of the F-C test. The first (top) table
shows errors in the material temperature (T ) and the second (bottom) shows errors in the
total radiation energy density (E). Each row corresponds to a different value of ξ and
each column corresponds to the specific instant of time. These include ξ = 10−2, 10−4 and
t = 1, 2, 3 ns, respectively. All plots contained on a single row use the same scale for their
color distributions. In order, Figures 13, 14 and 15 correspond to the errors in the DET
ROMs equipped with the POD, DMD and DMD-E. These figures demonstrate that the
spatial distribution of errors in those low-rank ROMs is relatively uniform. There are no
sharp changes in the error about spatial position and each point has an error value residing
in a close neighborhood to the relative 2-norm error for the corresponding ROM and time
point shown in Figures 7, 8 and 9. Further analysis has shown similar results for higher rank
DET ROMs.

6.5. Analysis of Radiation Wave Propagation

We now consider properties of the DET class of ROMs in capturing certain physics
of TRT problems. One metric of particular importance is breakout time of radiation that
characterises how well the ROMs are able to reproduce the FOM radiation wavefront as it
propagates through the spatial domain [81, 83]. The radiation wave produced in the F-C
test travels from left to right and correspondingly the notion of breakout time is associated
with radiation levels at the right boundary. Typically in the literature, breakout time is
measured as the elapsed time until a certain level of radiative flux is detected [81, 83]. Here
we consider not only the radiation flux, but the energy density and material temperature
at the right boundary of the F-C test as well. We consider the boundary-averages of these
quantities, defined as follows:

F̄R =
1

LR

∫ LR

0

ex · F (xR, y) dy, (47a)

ĒR =
1

LR

∫ LR

0

E(xR, y) dy, (47b)

T̄R =
1

LR

∫ LR

0

T (xR, y) dy, (47c)

where LR = xR = 6cm. The time evolution of F̄R, ĒR, and T̄R, calculated with the
FOM is depicted in Figure 16. These figures show two sharp increases in F̄R and ĒR

followed by plateaus, whereas T̄R increases smoothly until reaching a final plateau. The
initial plateaus for F̄R, ĒR occur at roughly 0.5 ns and indicate when the high-energy
radiation has penetrated the domain. The final plateaus for each F̄R, ĒR, and T̄R occurs at
about 2.5 ns, indicating full penetration of the domain.
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Figure 13: Cell-wise relative error in material temperature (T ) and total radiation energy density (E) over
the spatial domain at times t=1, 2, 3 ns for the DET ROM equipped with the POD for ξ = 10−2, 10−4.
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Figure 14: Cell-wise relative error in material temperature (T ) and total radiation energy density (E) over
the spatial domain at times t=1, 2, 3 ns for the DET ROM equipped with the DMD for ξ = 10−2, 10−4.
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Figure 15: Cell-wise relative error in material temperature (T ) and total radiation energy density (E) over
the spatial domain at times t=1, 2, 3 ns for the DET ROM equipped with the DMD-E for ξ = 10−2, 10−4.
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Figure 16: Total radiation flux (F̄R), total radiation energy density (ĒR) and material temperature (T̄R)
averaged over the right boundary of the spatial domain plotted vs time. Shown solutions are generated by
the FOM.

Figures 17 and 18 plot the relative error in each of these quantities produced by the
DET ROMs using the POD, DMD and DMD-E with a very low rank corresponding to
ξ = 10−2, 10−4, respectively. In a similar manner to the results shown above, the DET ROM
with the DMD is observed to reproduce the FOM with the lowest accuracy and the ROMs
with the POD and DMD-E achieve similar levels of error to one another. High accuracy is
achieved for all considered ROMs with the highest errors on the order of 10−2. When using
the POD or DMD-E even with ξ = 10−2, the relative error is about 10−3.

These results show that the low-rank DET ROMs generate predictions of the temperature
and radiation wave propagations with accuracy sufficient for practical simulations. In the
vast majority of cases each of these ROMs yielded the same time step as the FOM for when
either F̄R, ĒR, and T̄R reached a certain arbitrary value.
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0 1 2 3 4 5 6
Time (ns)

10 8

10 6

10 4

10 2

100

|T
FO

M
T R

O
M

|
|T

FO
M

|

DMD
DMD-E
POD

(c) T̄R

Figure 17: Relative error for the DET ROMs with ξ = 10−2 for data located at and integrated over the
right boundary of the domain.
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Figure 18: Relative error for the DET ROMs with ξ = 10−4 for data located at and integrated over the
right boundary of the domain.

7. A Parameterization of the DET ROMs

7.1. Dimensionless Equations for Grey TRT Problems

In order to identify an appropriate parameterization of the DET ROMs for the target
class of TRT problems, we nondimensionalize the following grey TRT problem to analyze
its dependencies on parameters of interest:

1

c

∂Ĩ

∂t
+Ω ·∇Ĩ + κ̃(T )Ĩ = κ̃(T )B(T ), (48)

r ∈ Γ, Ω ∈ S, t ∈ [0, tend] ,

Ĩ
∣∣
r∈∂Γ =

1

4π
B(T in) for Ω · en < 0, Ĩ

∣∣
t=0

=
1

4π
B(T 0), (49)

∂ε(T )

∂t
= κ̃(T )

(∫
4π

ĨdΩ− 4πB(T )

)
, (50)

T |t=0 = T 0. (51)

Here Ĩ = Ĩ(r,Ω, t) is the grey intensity, κ̃ is the grey opacity, and

B(T ) =

∫ ∞

0

B(ν, T ) dν =
caR
4π

T 4 (52)

is the Planckian function, where B(ν, T ) is defined in Eq. (7). The LOQD equations for
Ẽ = 1

c

∫
4π
ĨdΩ and F̃ =

∫
4π
ΩĨdΩ are given by

∂Ẽ

∂t
+∇ · F̃ + cκ̃(T )Ẽ = 4πκ̃(T )B(T ), (53a)

1

c

∂F̃

∂t
+ c∇ · (̃fẼ) + κ̃(T )F̃ = 0, (53b)

en · F̃
∣∣
r∈∂Γ = cC̃

(
Ẽ
∣∣
r∈∂Γ −

α0

c
B(T in)

)
+ α1B(T in), (53c)

Ẽ
∣∣
t=0

=
1

c
B(T 0), F̃

∣∣
t=0

= 0, (53d)
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where

f̃[Ĩ] =

∫
4π
Ω⊗ΩĨ dΩ∫
4π
ĨdΩ

, (54)

C̃[Ĩ] =

∫
Ω·en>0

en ·ΩĨ dΩ∫
Ω·en>0

Ĩ dΩ

∣∣∣∣
r∈∂Γ

, (55)

αk =

∫
Ω·en<0

(en ·Ω)kdΩ
∣∣
r∈∂Γ , k = 0, 1 . (56)

These equations are coupled with the MEB equation defined by

∂ε(T )

∂t
= κ̃(T )

(
cẼ − 4πB(T )

)
. (57)

To derive a dimensionless system of equations from Eqs. (48), (53) and (57) we change
variables using the characteristic length scale L of the spatial domain and temperature scale
T̂ . We consider the case with a linear material energy density

ε(T ) = cvT, (58)

and an opacity function of the following form:

κ(T ) =
κ0

T p
, p ≥ 0, (59)

where κ0 is some constant. Dimensionless spatial and temporal variables are defined as

ρ =
r

L
, τ =

c

L
t. (60)

Dimensionless dependent variables are given by

I(ρ,Ω, τ) =
Ĩ(r,Ω, t)

B̂
, E(ρ, τ) = c

Ẽ(r, t)

4πB̂
, F(ρ, τ) =

F̃ (r, t)

4πB̂
, θ(ρ, τ) =

T (r, t)

T̂
, (61)

where
B̂ = B(T̂ ). (62)

Lastly we introduce the following dimensionless coefficients:

σ =
Lκ0

T̂ p
, η =

cv

aRT̂ 3
. (63)

We apply change of variables defined by Eq. (61) in the grey BTE (Eq. (48)) to obtain

B̂

L

(
∂I

∂τ
+Ω ·∇ρI

)
+

κ0

T̂ pθp
B̂I =

κ0

T̂ pθp
B(T ) . (64)
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As a result, the dimensionless BTE has the following form:

∂I

∂τ
+Ω ·∇ρI+

σ

θp
I =

σ

θp
β(θ), ρ ∈ Λ, Ω ∈ S, τ ≥ 0 (65)

with the BC and IC given by

I
∣∣
ρ∈∂Λ =

1

4π
β(θin) for Ω · en < 0, I

∣∣
τ=0

=
1

4π
β(θ0), (66)

where Λ is the scaled spatial domain,

β(θ) =
B

B̂
= θ4, θin =

T in

T̂
, θ0 =

T 0

T̂
. (67)

A change of variables is performed on the radiation energy balance equation (Eq. (53a)) to
get

B̂

L

(
∂E

∂τ
+∇ρ · F

)
+

κ0

T̂ pθp
B̂E =

κ0

T̂ pθp
B, (68)

which when recombined becomes the dimensionless radiation energy balance equation

∂E

∂τ
+∇ρ · F+

σ

θp
E =

σ

θp
β(θ). (69)

The variables in Eq. (61) are similarly substituted into the radiation momentum balance
equation (Eq. (53b)) to find

B̂

L

(
∂F

∂τ
+∇ρ · (̃fE)

)
+

κ0B̂

T̂ pθp
F = 0, (70)

which gives rise to the dimensionless radiation momentum balance equation

∂F

∂τ
+∇ρ · (̃fE) +

σ

θp
F = 0. (71)

The BC and IC are defined by

en · F
∣∣
ρ∈∂Λ = cC̃

(
E
∣∣
ρ∈∂Λ −

α0

4πc
β(θin)

)
+

α1

4π
β(θin) , (72)

E
∣∣
τ=0

=
1

4πc
β(θ0), F

∣∣
τ=0

= 0 . (73)

The Eddington tensor f̃ and boundary factor C̃ are dimensionless quantities by definition
(Eqs. (54) and (55)) and

f̃[Ĩ] = f̃[I] , C̃[Ĩ] = C̃[I] . (74)

The change of variables applied to the MEB equation (Eq. (57)) with a material energy
density of the form in Eq. (58) yields

cvcT̂

L

∂θ

∂τ
=

4πκ0

T̂ pθp
(B̂E−B). (75)
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which leads to the dimensionless MEB equation given by

η
∂θ

∂τ
=

σ

θp
(E− β(θ)) , θ

∣∣
τ=0

= θ0 . (76)

Equations (65), (69), (71), and (76) with corresponding BCs and ICs comprise a dimen-
sionless description of the grey TRT problem. We notice that these equations depend on
parameter σ defined in Eq. (63).

We now consider the F-C test defined in Section 6.2. The spectral opacity κ(ν, T ) in
this test is given by Eq. (45). The characteristic grey opacity can be evaluated as

κ(T ) =
∫∞
0

κ(ν, T )B(ν, T ) dν∫∞
0

B(ν, T ) dν
, (77)

which results in

κ(T ) =
κ̃0

T 3
, (78)

where

κ̃0 =
15κ∗

π4

[
KeV3

cm

]
, (79)

and κ∗ = 27 is a parameter of the F-C test. Thus, in the F-C test p = 3.
In the next section, we perform parametrization of the DET ROM for the F-C problem

with respect to the temperature of incoming radiation T in. We choose the characteristic
temperature T̂ = T in. As a result, the parameter σ of the dimensionless grey TRT problem
varies versus characteristic temperature of the problem as (T in)−3. Note that BCs (66) and
(72) are independent of the temperature of incoming radiation due to β(T in) = 1.

7.2. Numerical Results

The F-C test (see Section 6.2) mimics the class of supersonic radiation shock prob-
lems and experiments [81, 82, 83, 84], with radiation flowing from the high-temperature
‘drive’ at the left boundary to the cold right boundary. It is therefore natural to define
the characteristic temperature T̂ as the temperature of incoming radiation (radiation drive
temperature) T in. In this section a parameterization of the DET ROMs is analyzed using
the single parameter ϑ = T in. We develop interpolation-based ROM defined for the time
interval with tend = 6 ns. The space of considered parameter values is set to the interval
Θ ≡ [0.5, 1.5KeV]. The interpolation function I(ϑ) (see Eq. (44)) is set to a natural cubic
spline.

The interval of T in ∈ [0.5, 1.5KeV] is chosen to test the parametrized DET ROMs. This
interval is a large one, covering 1 KeV of change between the possible values of the bound-
ary temperature (or radiation drive). The F-C test’s physics change over this range. The
spectrum of radiation formed by the left-boundary condition has its peak at ν = 2.82T in.
Therefore the bulk of radiation that forms the wavefront propagating through the test do-
main varies over a 1 KeV range as well. Evaluating the characteristic grey opacity (Eq. (78))
over the interval of considered drive temperatures gives that κ|T=0.5 = 27κ|T=1.5. As such
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different portions of this drive temperature range will result in distinct, separate physical
characterizations of the F-C test in space-time.

It is worth noting that in the parameterized case, the only additional source of error to the
DET ROM solution compared to the non-parameterized case comes from I(ϑ). As such for
any well-chosen interpolation function and a fine enough grid in ϑ, the parameterized DET
ROM’s behavior will be the same as shown in Section 6. In practice coarse parameter grids
are desirable, and it is most important to identify I(ϑ) that can introduce errors on the level
less than observed for the non-parameterized DET ROMs with low rank (ξ = 10−2, 10−4).
In this way the parameterized DET ROM can produce solutions for unsampled parameter
values with similar levels of error as for the non-parameterized case with low rank.

The dimensionless analysis from Section 7.1 suggests a parameterization over ϑ̃in =
1/(T in)3. Therefore we apply a natural cubic spline interpolant of ϑ̃in (i.e. I((T in)−3)) when
interpolating between FOM solutions in our database. A sampling scheme must also be
identified to select the FOM parameter values {ϑ̃in

ℓ }Lℓ=1 ⊂ Θ which are used to form the
database of solutions. Analysis showed that a sampling scheme that can provide accuracy
close in its order of magnitude for the parameterized DET ROMs across the whole interval
ϑ̃in ∈ [1.5−3, 8] should handle intervals ϑ̃in ∈ [1.5−3, 1] and ϑ̃in ∈ [1, 8] differently. We select
the points uniformly distributed over ϑ̃ ∈ [1, 8]. The high-energy subinterval ϑ̃in ∈ [1.5−3, 1]
can have a coarser sampled grid. Analysis of various variants of sampling for the high-energy
portion of the interval showed also that for the interval ϑ̃in ∈ [1.5−3, 1] uniform sampling
with respect to (ϑ̃in)−3 gives better results.

ℓ ϑ̃in
ℓ T in

ℓ [KeV]
1 0.296 1.5
2 0.512 1.25
3 1.0 1.0
4 2.75 0.714
5 4.49 0.606
6 6.25 0.543
7 8.0 0.5

(a) L = 7

ℓ ϑ̃in
ℓ T in

ℓ [KeV] ℓ ϑ̃in
ℓ T in

ℓ [KeV]
1 0.296 1.5 8 3.62 0.651
2 0.385 1.375 9 4.49 0.606
3 0.512 1.25 10 5.37 0.571
4 0.702 1.125 11 6.25 0.543
5 1.0 1.0 12 7.11 0.520
6 1.87 0.811 13 8.0 0.5
7 2.75 0.714

(b) L = 13

Table 5: Grids in ϑ̃in = (T in)−3 for parameterized DET ROMs with 7 and 13 points

Table 5 presents the sampled points in T in for this scheme with 2 levels of refinement. A
grid with L = 7 is presented, where 3 points are used to sample the high-energy subinterval
and 5 points are used in the low-energy subinterval. The second grid with L = 13 uses 5
and 9 points in the high and low energy subintervals, respectively. The test points where
the parameterized DET ROMs will be evaluated for error analysis are shown in Table 6.
These test points are defined to be equidistant between each adjacent sampling point in the
inverse cubic and linear senses for the low and high energy subintervals, respectively.

Figures 19 and 20 plot the relative errors in the material temperature and total radiation
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ℓ ϑ̃in
ℓ T in

ℓ [KeV]
1 0.385 1.375
2 0.702 1.125
3 1.87 0.811
4 3.62 0.651
5 5.37 0.571
6 7.11 0.520

(a) L = 7

ℓ ϑ̃in
ℓ T in

ℓ [KeV] ℓ ϑ̃in
ℓ T in

ℓ [KeV]
1 0.366 1.438 7 3.19 0.679
2 0.442 1.313 8 4.06 0.627
3 0.596 1.188 9 4.94 0.587
4 0.833 1.063 10 5.82 0.556
5 1.44 0.886 11 6.68 0.531
6 2.31 0.756 12 7.58 0.509

(b) L = 13

Table 6: Test points for ϑ̃in to evaluate the parameterized DET ROMs with 7 and 13 points.

energy density in the 2-norm over space produced by the parameterized DET ROM using
ξ = 10−2 and ξ = 10−4 respectively at the 7-point grid test points shown in Table 6. Errors
are calculated relative to the FOM solution for the same value of T in. In both cases the
interpolation function I(ϑ̃) is used, defined for the sampled points in the 7-point grid shown
in Table 5. The error levels for both T and E at every tested value for T in are bounded by
roughly 2× 10−3 and reside in a close interval to one another at each instant of time. The
tested values for T in > 1 KeV have greater accuracy than those values for T in < 1 KeV in
general during the interval t ≥ 1 ns with the exception of T in = 0.811 KeV. For ξ = 10−2

the errors vs. time are close to those seen for the non-parameterized case (see Figure 7),
and when ξ = 10−4 these error values decrease in the range t ≤ 2 ns.

Figures 21 and 22 plot the relative errors in the material temperature and total radiation
energy density in the 2-norm over space produced by the parameterized DET ROM using
ξ = 10−2 and ξ = 10−4 respectively at the 13-point grid test points shown in Table 6. In
both cases the interpolation function I(ϑ̃) is used, defined for the sampled points in the
13-point grid shown in Table 5. Here the error levels across time are the same as seen for
the non-parameterized case for all tested T in when ξ = 10−2. All error levels decrease when
ξ = 10−4. The points when T in > 1 KeV are observed to decrease somewhat uniformly
in time with ξ, and the points for T in < 1 KeV decrease more significantly at early times,
increasing with time until roughly t = 3 ns where a plateau around 10−4 is reached.
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(b) Radiation Energy Density

Figure 19: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2, evaluated at the
T in values in Table 6 with the interpolation function over ϑ̃in = (T in)−3 defined for the values shown in
Table 5 for L = 7. Errors are plotted vs. time
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(b) Radiation Energy Density

Figure 20: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4, evaluated at the
T in values in Table 6 with the interpolation function over ϑ̃in = (T in)−3 defined for the values shown in
Table 5 for L = 7. Errors are plotted vs. time
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(b) Radiation Energy Density

Figure 21: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−2, evaluated at the
T in values in Table 6 with the interpolation function over ϑ̃in = (T in)−3 defined for the values shown in
Table 5 for L = 13. Errors are plotted vs. time
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Figure 22: Relative errors in the 2-norm of the DET ROM with the POD and ξ = 10−4, evaluated at the
T in values in Table 6 with the interpolation function over ϑ̃in = (T in)−3 defined for the values shown in
Table 5 for L = 13. Errors are plotted vs. time
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8. Conclusion

In this paper, new structure and asymptotic preserving ROMs for TRT problems are pre-
sented. The DET ROMs are formulated by a multilevel system of moment equations derived
by means of the nonlinear-projective approach. The exact closures of the radiation pressure
tensor in the moment equations are formulated by the group Eddington (QD) tensor defined
by the specific intensity. The proposed ROMs employ data-driven approximations for the
group Eddington tensor based on available data to formulate approximate closures. Three
data compression techniques are applied, namely, POD, DMD and DMD-E. The low-rank
approximation of the group Eddington tensor is performed over the whole phase space and
time interval. The hierarchy of moment equations include radiation energy and momentum
balance equations. These equations are discretized by conservative discretization schemes.
The solution of the discretized moment equations satisfies the corresponding conservation
laws.

Analysis of the DET ROMs has been performed on the classical Fleck-Cummings TRT
multigroup test problem with a radiation-driven Marshak wave. The ROMs were proven
effective in reducing dimensionality of TRT problems and shown capable of producing solu-
tions with a spectrum of accuracy depending on the used rank of approximation. A linear
relationship was observed between the ROM solution accuracy and the rank of approxima-
tion while using the POD and DMD, allowing for a-priori predictions of the ROM solution
error levels based on the rank parameter ξ. The DET ROMs have been applied to develop
a parameterized ROM for a class of TRT problems. Parameterization was investigated for
temperature of incoming radiation at the boundary that drives the Marshak wave. Analysis
of a dimensionless grey TRT problem has been used to identify elements of database rep-
resentation. An inverse cubic parameterization in the incoming radiation temperature was
shown to produce solutions with relatively uniform accuracy across the entire considered
interval of temperatures.

The POD ROM closely matches the DMD-E ROM for low-rank approximations, and is
more accurate than either DMD ROM for high-rank approximations, although the DMD
ROMs have the strength of being continuous in time. If the POD ROM is to be applied to
a different set of time steps than those used to generate the training data, an interpolation
scheme must be defined on the training grid of time instances and used to generate new data
for the new values of time steps ∆t [108]. A possible technique to overcome the shortcomings
of both DMD ROMs would be to combine them such that the DMD-E ROM is used for
low-rank approximations and the DMD is used instead for high-rank approximations. This
would produce a DMD-based DET ROM with accuracy similar to the POD ROM while
using low-rank that is able to converge as the rank is increased.

The results and analysis of the DET ROMs encourage continued development, and several
pathways for future research can be identified. The ROM parameterization can be extended
to the multivariate case applying advanced data sampling techniques [109, 110]. Methods
of symmetry reduction [111, 112] can also be applied to improve efficiency of the Eddington
tensor approximation The proposed approach for development of ROMs has a potential for
application to different multiphysical high-energy density problems.
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